\(\int \frac {(e \cos (c+d x))^{3/2}}{(a+b \sin (c+d x))^4} \, dx\) [611]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [C] (warning: unable to verify)
   Fricas [F]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 592 \[ \int \frac {(e \cos (c+d x))^{3/2}}{(a+b \sin (c+d x))^4} \, dx=-\frac {a \left (a^2+6 b^2\right ) e^{3/2} \arctan \left (\frac {\sqrt {b} \sqrt {e \cos (c+d x)}}{\sqrt [4]{-a^2+b^2} \sqrt {e}}\right )}{16 b^{3/2} \left (-a^2+b^2\right )^{11/4} d}-\frac {a \left (a^2+6 b^2\right ) e^{3/2} \text {arctanh}\left (\frac {\sqrt {b} \sqrt {e \cos (c+d x)}}{\sqrt [4]{-a^2+b^2} \sqrt {e}}\right )}{16 b^{3/2} \left (-a^2+b^2\right )^{11/4} d}-\frac {\left (3 a^2+4 b^2\right ) e^2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{24 b^2 \left (a^2-b^2\right )^2 d \sqrt {e \cos (c+d x)}}+\frac {a^2 \left (a^2+6 b^2\right ) e^2 \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{b-\sqrt {-a^2+b^2}},\frac {1}{2} (c+d x),2\right )}{16 b^2 \left (a^2-b^2\right )^2 \left (a^2-b \left (b-\sqrt {-a^2+b^2}\right )\right ) d \sqrt {e \cos (c+d x)}}+\frac {a^2 \left (a^2+6 b^2\right ) e^2 \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{b+\sqrt {-a^2+b^2}},\frac {1}{2} (c+d x),2\right )}{16 b^2 \left (a^2-b^2\right )^2 \left (a^2-b \left (b+\sqrt {-a^2+b^2}\right )\right ) d \sqrt {e \cos (c+d x)}}-\frac {e \sqrt {e \cos (c+d x)}}{3 b d (a+b \sin (c+d x))^3}+\frac {a e \sqrt {e \cos (c+d x)}}{12 b \left (a^2-b^2\right ) d (a+b \sin (c+d x))^2}+\frac {\left (3 a^2+4 b^2\right ) e \sqrt {e \cos (c+d x)}}{24 b \left (a^2-b^2\right )^2 d (a+b \sin (c+d x))} \]

[Out]

-1/16*a*(a^2+6*b^2)*e^(3/2)*arctan(b^(1/2)*(e*cos(d*x+c))^(1/2)/(-a^2+b^2)^(1/4)/e^(1/2))/b^(3/2)/(-a^2+b^2)^(
11/4)/d-1/16*a*(a^2+6*b^2)*e^(3/2)*arctanh(b^(1/2)*(e*cos(d*x+c))^(1/2)/(-a^2+b^2)^(1/4)/e^(1/2))/b^(3/2)/(-a^
2+b^2)^(11/4)/d-1/24*(3*a^2+4*b^2)*e^2*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1
/2*c),2^(1/2))*cos(d*x+c)^(1/2)/b^2/(a^2-b^2)^2/d/(e*cos(d*x+c))^(1/2)+1/16*a^2*(a^2+6*b^2)*e^2*(cos(1/2*d*x+1
/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2*b/(b-(-a^2+b^2)^(1/2)),2^(1/2))*cos(d*x+c)^(
1/2)/b^2/(a^2-b^2)^2/d/(a^2-b*(b-(-a^2+b^2)^(1/2)))/(e*cos(d*x+c))^(1/2)+1/16*a^2*(a^2+6*b^2)*e^2*(cos(1/2*d*x
+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2*b/(b+(-a^2+b^2)^(1/2)),2^(1/2))*cos(d*x+c)
^(1/2)/b^2/(a^2-b^2)^2/d/(a^2-b*(b+(-a^2+b^2)^(1/2)))/(e*cos(d*x+c))^(1/2)-1/3*e*(e*cos(d*x+c))^(1/2)/b/d/(a+b
*sin(d*x+c))^3+1/12*a*e*(e*cos(d*x+c))^(1/2)/b/(a^2-b^2)/d/(a+b*sin(d*x+c))^2+1/24*(3*a^2+4*b^2)*e*(e*cos(d*x+
c))^(1/2)/b/(a^2-b^2)^2/d/(a+b*sin(d*x+c))

Rubi [A] (verified)

Time = 0.94 (sec) , antiderivative size = 592, normalized size of antiderivative = 1.00, number of steps used = 15, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.480, Rules used = {2772, 2943, 2946, 2721, 2720, 2781, 2886, 2884, 335, 218, 214, 211} \[ \int \frac {(e \cos (c+d x))^{3/2}}{(a+b \sin (c+d x))^4} \, dx=-\frac {a e^{3/2} \left (a^2+6 b^2\right ) \arctan \left (\frac {\sqrt {b} \sqrt {e \cos (c+d x)}}{\sqrt {e} \sqrt [4]{b^2-a^2}}\right )}{16 b^{3/2} d \left (b^2-a^2\right )^{11/4}}-\frac {a e^{3/2} \left (a^2+6 b^2\right ) \text {arctanh}\left (\frac {\sqrt {b} \sqrt {e \cos (c+d x)}}{\sqrt {e} \sqrt [4]{b^2-a^2}}\right )}{16 b^{3/2} d \left (b^2-a^2\right )^{11/4}}-\frac {e^2 \left (3 a^2+4 b^2\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{24 b^2 d \left (a^2-b^2\right )^2 \sqrt {e \cos (c+d x)}}+\frac {a^2 e^2 \left (a^2+6 b^2\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{b-\sqrt {b^2-a^2}},\frac {1}{2} (c+d x),2\right )}{16 b^2 d \left (a^2-b^2\right )^2 \left (a^2-b \left (b-\sqrt {b^2-a^2}\right )\right ) \sqrt {e \cos (c+d x)}}+\frac {a^2 e^2 \left (a^2+6 b^2\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{b+\sqrt {b^2-a^2}},\frac {1}{2} (c+d x),2\right )}{16 b^2 d \left (a^2-b^2\right )^2 \left (a^2-b \left (\sqrt {b^2-a^2}+b\right )\right ) \sqrt {e \cos (c+d x)}}+\frac {e \left (3 a^2+4 b^2\right ) \sqrt {e \cos (c+d x)}}{24 b d \left (a^2-b^2\right )^2 (a+b \sin (c+d x))}+\frac {a e \sqrt {e \cos (c+d x)}}{12 b d \left (a^2-b^2\right ) (a+b \sin (c+d x))^2}-\frac {e \sqrt {e \cos (c+d x)}}{3 b d (a+b \sin (c+d x))^3} \]

[In]

Int[(e*Cos[c + d*x])^(3/2)/(a + b*Sin[c + d*x])^4,x]

[Out]

-1/16*(a*(a^2 + 6*b^2)*e^(3/2)*ArcTan[(Sqrt[b]*Sqrt[e*Cos[c + d*x]])/((-a^2 + b^2)^(1/4)*Sqrt[e])])/(b^(3/2)*(
-a^2 + b^2)^(11/4)*d) - (a*(a^2 + 6*b^2)*e^(3/2)*ArcTanh[(Sqrt[b]*Sqrt[e*Cos[c + d*x]])/((-a^2 + b^2)^(1/4)*Sq
rt[e])])/(16*b^(3/2)*(-a^2 + b^2)^(11/4)*d) - ((3*a^2 + 4*b^2)*e^2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2
])/(24*b^2*(a^2 - b^2)^2*d*Sqrt[e*Cos[c + d*x]]) + (a^2*(a^2 + 6*b^2)*e^2*Sqrt[Cos[c + d*x]]*EllipticPi[(2*b)/
(b - Sqrt[-a^2 + b^2]), (c + d*x)/2, 2])/(16*b^2*(a^2 - b^2)^2*(a^2 - b*(b - Sqrt[-a^2 + b^2]))*d*Sqrt[e*Cos[c
 + d*x]]) + (a^2*(a^2 + 6*b^2)*e^2*Sqrt[Cos[c + d*x]]*EllipticPi[(2*b)/(b + Sqrt[-a^2 + b^2]), (c + d*x)/2, 2]
)/(16*b^2*(a^2 - b^2)^2*(a^2 - b*(b + Sqrt[-a^2 + b^2]))*d*Sqrt[e*Cos[c + d*x]]) - (e*Sqrt[e*Cos[c + d*x]])/(3
*b*d*(a + b*Sin[c + d*x])^3) + (a*e*Sqrt[e*Cos[c + d*x]])/(12*b*(a^2 - b^2)*d*(a + b*Sin[c + d*x])^2) + ((3*a^
2 + 4*b^2)*e*Sqrt[e*Cos[c + d*x]])/(24*b*(a^2 - b^2)^2*d*(a + b*Sin[c + d*x]))

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 218

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]},
Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !Gt
Q[a/b, 0]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rule 2772

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[g*(g*C
os[e + f*x])^(p - 1)*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 1))), x] + Dist[g^2*((p - 1)/(b*(m + 1))), Int[(g
*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 1)*Sin[e + f*x], x], x] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a
^2 - b^2, 0] && LtQ[m, -1] && GtQ[p, 1] && IntegersQ[2*m, 2*p]

Rule 2781

Int[1/(Sqrt[cos[(e_.) + (f_.)*(x_)]*(g_.)]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> With[{q = Rt[
-a^2 + b^2, 2]}, Dist[-a/(2*q), Int[1/(Sqrt[g*Cos[e + f*x]]*(q + b*Cos[e + f*x])), x], x] + (Dist[b*(g/f), Sub
st[Int[1/(Sqrt[x]*(g^2*(a^2 - b^2) + b^2*x^2)), x], x, g*Cos[e + f*x]], x] - Dist[a/(2*q), Int[1/(Sqrt[g*Cos[e
 + f*x]]*(q - b*Cos[e + f*x])), x], x])] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2886

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/
(c + d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 2943

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]), x_Symbol] :> Simp[(-(b*c - a*d))*(g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^(m + 1)/(f*g*(
a^2 - b^2)*(m + 1))), x] + Dist[1/((a^2 - b^2)*(m + 1)), Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m + 1)*S
imp[(a*c - b*d)*(m + 1) - (b*c - a*d)*(m + p + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p},
x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && IntegerQ[2*m]

Rule 2946

Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]))/((a_) + (b_.)*sin[(e_.) + (
f_.)*(x_)]), x_Symbol] :> Dist[d/b, Int[(g*Cos[e + f*x])^p, x], x] + Dist[(b*c - a*d)/b, Int[(g*Cos[e + f*x])^
p/(a + b*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {e \sqrt {e \cos (c+d x)}}{3 b d (a+b \sin (c+d x))^3}-\frac {e^2 \int \frac {\sin (c+d x)}{\sqrt {e \cos (c+d x)} (a+b \sin (c+d x))^3} \, dx}{6 b} \\ & = -\frac {e \sqrt {e \cos (c+d x)}}{3 b d (a+b \sin (c+d x))^3}+\frac {a e \sqrt {e \cos (c+d x)}}{12 b \left (a^2-b^2\right ) d (a+b \sin (c+d x))^2}+\frac {e^2 \int \frac {2 b-\frac {3}{2} a \sin (c+d x)}{\sqrt {e \cos (c+d x)} (a+b \sin (c+d x))^2} \, dx}{12 b \left (a^2-b^2\right )} \\ & = -\frac {e \sqrt {e \cos (c+d x)}}{3 b d (a+b \sin (c+d x))^3}+\frac {a e \sqrt {e \cos (c+d x)}}{12 b \left (a^2-b^2\right ) d (a+b \sin (c+d x))^2}+\frac {\left (3 a^2+4 b^2\right ) e \sqrt {e \cos (c+d x)}}{24 b \left (a^2-b^2\right )^2 d (a+b \sin (c+d x))}-\frac {e^2 \int \frac {-\frac {7 a b}{2}+\frac {1}{4} \left (3 a^2+4 b^2\right ) \sin (c+d x)}{\sqrt {e \cos (c+d x)} (a+b \sin (c+d x))} \, dx}{12 b \left (a^2-b^2\right )^2} \\ & = -\frac {e \sqrt {e \cos (c+d x)}}{3 b d (a+b \sin (c+d x))^3}+\frac {a e \sqrt {e \cos (c+d x)}}{12 b \left (a^2-b^2\right ) d (a+b \sin (c+d x))^2}+\frac {\left (3 a^2+4 b^2\right ) e \sqrt {e \cos (c+d x)}}{24 b \left (a^2-b^2\right )^2 d (a+b \sin (c+d x))}-\frac {\left (\left (3 a^2+4 b^2\right ) e^2\right ) \int \frac {1}{\sqrt {e \cos (c+d x)}} \, dx}{48 b^2 \left (a^2-b^2\right )^2}+\frac {\left (a \left (a^2+6 b^2\right ) e^2\right ) \int \frac {1}{\sqrt {e \cos (c+d x)} (a+b \sin (c+d x))} \, dx}{16 b^2 \left (a^2-b^2\right )^2} \\ & = -\frac {e \sqrt {e \cos (c+d x)}}{3 b d (a+b \sin (c+d x))^3}+\frac {a e \sqrt {e \cos (c+d x)}}{12 b \left (a^2-b^2\right ) d (a+b \sin (c+d x))^2}+\frac {\left (3 a^2+4 b^2\right ) e \sqrt {e \cos (c+d x)}}{24 b \left (a^2-b^2\right )^2 d (a+b \sin (c+d x))}-\frac {\left (a^2 \left (a^2+6 b^2\right ) e^2\right ) \int \frac {1}{\sqrt {e \cos (c+d x)} \left (\sqrt {-a^2+b^2}-b \cos (c+d x)\right )} \, dx}{32 b^2 \left (-a^2+b^2\right )^{5/2}}-\frac {\left (a^2 \left (a^2+6 b^2\right ) e^2\right ) \int \frac {1}{\sqrt {e \cos (c+d x)} \left (\sqrt {-a^2+b^2}+b \cos (c+d x)\right )} \, dx}{32 b^2 \left (-a^2+b^2\right )^{5/2}}+\frac {\left (a \left (a^2+6 b^2\right ) e^3\right ) \text {Subst}\left (\int \frac {1}{\sqrt {x} \left (\left (a^2-b^2\right ) e^2+b^2 x^2\right )} \, dx,x,e \cos (c+d x)\right )}{16 b \left (a^2-b^2\right )^2 d}-\frac {\left (\left (3 a^2+4 b^2\right ) e^2 \sqrt {\cos (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{48 b^2 \left (a^2-b^2\right )^2 \sqrt {e \cos (c+d x)}} \\ & = -\frac {\left (3 a^2+4 b^2\right ) e^2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{24 b^2 \left (a^2-b^2\right )^2 d \sqrt {e \cos (c+d x)}}-\frac {e \sqrt {e \cos (c+d x)}}{3 b d (a+b \sin (c+d x))^3}+\frac {a e \sqrt {e \cos (c+d x)}}{12 b \left (a^2-b^2\right ) d (a+b \sin (c+d x))^2}+\frac {\left (3 a^2+4 b^2\right ) e \sqrt {e \cos (c+d x)}}{24 b \left (a^2-b^2\right )^2 d (a+b \sin (c+d x))}+\frac {\left (a \left (a^2+6 b^2\right ) e^3\right ) \text {Subst}\left (\int \frac {1}{\left (a^2-b^2\right ) e^2+b^2 x^4} \, dx,x,\sqrt {e \cos (c+d x)}\right )}{8 b \left (a^2-b^2\right )^2 d}-\frac {\left (a^2 \left (a^2+6 b^2\right ) e^2 \sqrt {\cos (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \left (\sqrt {-a^2+b^2}-b \cos (c+d x)\right )} \, dx}{32 b^2 \left (-a^2+b^2\right )^{5/2} \sqrt {e \cos (c+d x)}}-\frac {\left (a^2 \left (a^2+6 b^2\right ) e^2 \sqrt {\cos (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \left (\sqrt {-a^2+b^2}+b \cos (c+d x)\right )} \, dx}{32 b^2 \left (-a^2+b^2\right )^{5/2} \sqrt {e \cos (c+d x)}} \\ & = -\frac {\left (3 a^2+4 b^2\right ) e^2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{24 b^2 \left (a^2-b^2\right )^2 d \sqrt {e \cos (c+d x)}}+\frac {a^2 \left (a^2+6 b^2\right ) e^2 \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{b-\sqrt {-a^2+b^2}},\frac {1}{2} (c+d x),2\right )}{16 b^2 \left (-a^2+b^2\right )^{5/2} \left (b-\sqrt {-a^2+b^2}\right ) d \sqrt {e \cos (c+d x)}}-\frac {a^2 \left (a^2+6 b^2\right ) e^2 \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{b+\sqrt {-a^2+b^2}},\frac {1}{2} (c+d x),2\right )}{16 b^2 \left (-a^2+b^2\right )^{5/2} \left (b+\sqrt {-a^2+b^2}\right ) d \sqrt {e \cos (c+d x)}}-\frac {e \sqrt {e \cos (c+d x)}}{3 b d (a+b \sin (c+d x))^3}+\frac {a e \sqrt {e \cos (c+d x)}}{12 b \left (a^2-b^2\right ) d (a+b \sin (c+d x))^2}+\frac {\left (3 a^2+4 b^2\right ) e \sqrt {e \cos (c+d x)}}{24 b \left (a^2-b^2\right )^2 d (a+b \sin (c+d x))}-\frac {\left (a \left (a^2+6 b^2\right ) e^2\right ) \text {Subst}\left (\int \frac {1}{\sqrt {-a^2+b^2} e-b x^2} \, dx,x,\sqrt {e \cos (c+d x)}\right )}{16 b \left (-a^2+b^2\right )^{5/2} d}-\frac {\left (a \left (a^2+6 b^2\right ) e^2\right ) \text {Subst}\left (\int \frac {1}{\sqrt {-a^2+b^2} e+b x^2} \, dx,x,\sqrt {e \cos (c+d x)}\right )}{16 b \left (-a^2+b^2\right )^{5/2} d} \\ & = -\frac {a \left (a^2+6 b^2\right ) e^{3/2} \arctan \left (\frac {\sqrt {b} \sqrt {e \cos (c+d x)}}{\sqrt [4]{-a^2+b^2} \sqrt {e}}\right )}{16 b^{3/2} \left (-a^2+b^2\right )^{11/4} d}-\frac {a \left (a^2+6 b^2\right ) e^{3/2} \text {arctanh}\left (\frac {\sqrt {b} \sqrt {e \cos (c+d x)}}{\sqrt [4]{-a^2+b^2} \sqrt {e}}\right )}{16 b^{3/2} \left (-a^2+b^2\right )^{11/4} d}-\frac {\left (3 a^2+4 b^2\right ) e^2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{24 b^2 \left (a^2-b^2\right )^2 d \sqrt {e \cos (c+d x)}}+\frac {a^2 \left (a^2+6 b^2\right ) e^2 \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{b-\sqrt {-a^2+b^2}},\frac {1}{2} (c+d x),2\right )}{16 b^2 \left (-a^2+b^2\right )^{5/2} \left (b-\sqrt {-a^2+b^2}\right ) d \sqrt {e \cos (c+d x)}}-\frac {a^2 \left (a^2+6 b^2\right ) e^2 \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 b}{b+\sqrt {-a^2+b^2}},\frac {1}{2} (c+d x),2\right )}{16 b^2 \left (-a^2+b^2\right )^{5/2} \left (b+\sqrt {-a^2+b^2}\right ) d \sqrt {e \cos (c+d x)}}-\frac {e \sqrt {e \cos (c+d x)}}{3 b d (a+b \sin (c+d x))^3}+\frac {a e \sqrt {e \cos (c+d x)}}{12 b \left (a^2-b^2\right ) d (a+b \sin (c+d x))^2}+\frac {\left (3 a^2+4 b^2\right ) e \sqrt {e \cos (c+d x)}}{24 b \left (a^2-b^2\right )^2 d (a+b \sin (c+d x))} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 20.54 (sec) , antiderivative size = 1263, normalized size of antiderivative = 2.13 \[ \int \frac {(e \cos (c+d x))^{3/2}}{(a+b \sin (c+d x))^4} \, dx=\frac {(e \cos (c+d x))^{3/2} \sec (c+d x) \left (-\frac {1}{3 b (a+b \sin (c+d x))^3}-\frac {a}{12 b \left (-a^2+b^2\right ) (a+b \sin (c+d x))^2}+\frac {3 a^2+4 b^2}{24 b \left (-a^2+b^2\right )^2 (a+b \sin (c+d x))}\right )}{d}-\frac {(e \cos (c+d x))^{3/2} \left (\frac {28 a b \left (a+b \sqrt {1-\cos ^2(c+d x)}\right ) \left (\frac {5 a \left (a^2-b^2\right ) \operatorname {AppellF1}\left (\frac {1}{4},\frac {1}{2},1,\frac {5}{4},\cos ^2(c+d x),\frac {b^2 \cos ^2(c+d x)}{-a^2+b^2}\right ) \sqrt {\cos (c+d x)}}{\sqrt {1-\cos ^2(c+d x)} \left (5 \left (a^2-b^2\right ) \operatorname {AppellF1}\left (\frac {1}{4},\frac {1}{2},1,\frac {5}{4},\cos ^2(c+d x),\frac {b^2 \cos ^2(c+d x)}{-a^2+b^2}\right )-2 \left (2 b^2 \operatorname {AppellF1}\left (\frac {5}{4},\frac {1}{2},2,\frac {9}{4},\cos ^2(c+d x),\frac {b^2 \cos ^2(c+d x)}{-a^2+b^2}\right )+\left (-a^2+b^2\right ) \operatorname {AppellF1}\left (\frac {5}{4},\frac {3}{2},1,\frac {9}{4},\cos ^2(c+d x),\frac {b^2 \cos ^2(c+d x)}{-a^2+b^2}\right )\right ) \cos ^2(c+d x)\right ) \left (a^2+b^2 \left (-1+\cos ^2(c+d x)\right )\right )}-\frac {\left (\frac {1}{8}-\frac {i}{8}\right ) \sqrt {b} \left (2 \arctan \left (1-\frac {(1+i) \sqrt {b} \sqrt {\cos (c+d x)}}{\sqrt [4]{-a^2+b^2}}\right )-2 \arctan \left (1+\frac {(1+i) \sqrt {b} \sqrt {\cos (c+d x)}}{\sqrt [4]{-a^2+b^2}}\right )+\log \left (\sqrt {-a^2+b^2}-(1+i) \sqrt {b} \sqrt [4]{-a^2+b^2} \sqrt {\cos (c+d x)}+i b \cos (c+d x)\right )-\log \left (\sqrt {-a^2+b^2}+(1+i) \sqrt {b} \sqrt [4]{-a^2+b^2} \sqrt {\cos (c+d x)}+i b \cos (c+d x)\right )\right )}{\left (-a^2+b^2\right )^{3/4}}\right ) \sin (c+d x)}{\sqrt {1-\cos ^2(c+d x)} (a+b \sin (c+d x))}-\frac {2 \left (3 a^2+4 b^2\right ) \left (a+b \sqrt {1-\cos ^2(c+d x)}\right ) \left (\frac {5 b \left (a^2-b^2\right ) \operatorname {AppellF1}\left (\frac {1}{4},-\frac {1}{2},1,\frac {5}{4},\cos ^2(c+d x),\frac {b^2 \cos ^2(c+d x)}{-a^2+b^2}\right ) \sqrt {\cos (c+d x)} \sqrt {1-\cos ^2(c+d x)}}{\left (-5 \left (a^2-b^2\right ) \operatorname {AppellF1}\left (\frac {1}{4},-\frac {1}{2},1,\frac {5}{4},\cos ^2(c+d x),\frac {b^2 \cos ^2(c+d x)}{-a^2+b^2}\right )+2 \left (2 b^2 \operatorname {AppellF1}\left (\frac {5}{4},-\frac {1}{2},2,\frac {9}{4},\cos ^2(c+d x),\frac {b^2 \cos ^2(c+d x)}{-a^2+b^2}\right )+\left (a^2-b^2\right ) \operatorname {AppellF1}\left (\frac {5}{4},\frac {1}{2},1,\frac {9}{4},\cos ^2(c+d x),\frac {b^2 \cos ^2(c+d x)}{-a^2+b^2}\right )\right ) \cos ^2(c+d x)\right ) \left (a^2+b^2 \left (-1+\cos ^2(c+d x)\right )\right )}+\frac {a \left (-2 \arctan \left (1-\frac {\sqrt {2} \sqrt {b} \sqrt {\cos (c+d x)}}{\sqrt [4]{a^2-b^2}}\right )+2 \arctan \left (1+\frac {\sqrt {2} \sqrt {b} \sqrt {\cos (c+d x)}}{\sqrt [4]{a^2-b^2}}\right )-\log \left (\sqrt {a^2-b^2}-\sqrt {2} \sqrt {b} \sqrt [4]{a^2-b^2} \sqrt {\cos (c+d x)}+b \cos (c+d x)\right )+\log \left (\sqrt {a^2-b^2}+\sqrt {2} \sqrt {b} \sqrt [4]{a^2-b^2} \sqrt {\cos (c+d x)}+b \cos (c+d x)\right )\right )}{4 \sqrt {2} \sqrt {b} \left (a^2-b^2\right )^{3/4}}\right ) \sin ^2(c+d x)}{\left (1-\cos ^2(c+d x)\right ) (a+b \sin (c+d x))}\right )}{48 (a-b)^2 b (a+b)^2 d \cos ^{\frac {3}{2}}(c+d x)} \]

[In]

Integrate[(e*Cos[c + d*x])^(3/2)/(a + b*Sin[c + d*x])^4,x]

[Out]

((e*Cos[c + d*x])^(3/2)*Sec[c + d*x]*(-1/3*1/(b*(a + b*Sin[c + d*x])^3) - a/(12*b*(-a^2 + b^2)*(a + b*Sin[c +
d*x])^2) + (3*a^2 + 4*b^2)/(24*b*(-a^2 + b^2)^2*(a + b*Sin[c + d*x]))))/d - ((e*Cos[c + d*x])^(3/2)*((28*a*b*(
a + b*Sqrt[1 - Cos[c + d*x]^2])*((5*a*(a^2 - b^2)*AppellF1[1/4, 1/2, 1, 5/4, Cos[c + d*x]^2, (b^2*Cos[c + d*x]
^2)/(-a^2 + b^2)]*Sqrt[Cos[c + d*x]])/(Sqrt[1 - Cos[c + d*x]^2]*(5*(a^2 - b^2)*AppellF1[1/4, 1/2, 1, 5/4, Cos[
c + d*x]^2, (b^2*Cos[c + d*x]^2)/(-a^2 + b^2)] - 2*(2*b^2*AppellF1[5/4, 1/2, 2, 9/4, Cos[c + d*x]^2, (b^2*Cos[
c + d*x]^2)/(-a^2 + b^2)] + (-a^2 + b^2)*AppellF1[5/4, 3/2, 1, 9/4, Cos[c + d*x]^2, (b^2*Cos[c + d*x]^2)/(-a^2
 + b^2)])*Cos[c + d*x]^2)*(a^2 + b^2*(-1 + Cos[c + d*x]^2))) - ((1/8 - I/8)*Sqrt[b]*(2*ArcTan[1 - ((1 + I)*Sqr
t[b]*Sqrt[Cos[c + d*x]])/(-a^2 + b^2)^(1/4)] - 2*ArcTan[1 + ((1 + I)*Sqrt[b]*Sqrt[Cos[c + d*x]])/(-a^2 + b^2)^
(1/4)] + Log[Sqrt[-a^2 + b^2] - (1 + I)*Sqrt[b]*(-a^2 + b^2)^(1/4)*Sqrt[Cos[c + d*x]] + I*b*Cos[c + d*x]] - Lo
g[Sqrt[-a^2 + b^2] + (1 + I)*Sqrt[b]*(-a^2 + b^2)^(1/4)*Sqrt[Cos[c + d*x]] + I*b*Cos[c + d*x]]))/(-a^2 + b^2)^
(3/4))*Sin[c + d*x])/(Sqrt[1 - Cos[c + d*x]^2]*(a + b*Sin[c + d*x])) - (2*(3*a^2 + 4*b^2)*(a + b*Sqrt[1 - Cos[
c + d*x]^2])*((5*b*(a^2 - b^2)*AppellF1[1/4, -1/2, 1, 5/4, Cos[c + d*x]^2, (b^2*Cos[c + d*x]^2)/(-a^2 + b^2)]*
Sqrt[Cos[c + d*x]]*Sqrt[1 - Cos[c + d*x]^2])/((-5*(a^2 - b^2)*AppellF1[1/4, -1/2, 1, 5/4, Cos[c + d*x]^2, (b^2
*Cos[c + d*x]^2)/(-a^2 + b^2)] + 2*(2*b^2*AppellF1[5/4, -1/2, 2, 9/4, Cos[c + d*x]^2, (b^2*Cos[c + d*x]^2)/(-a
^2 + b^2)] + (a^2 - b^2)*AppellF1[5/4, 1/2, 1, 9/4, Cos[c + d*x]^2, (b^2*Cos[c + d*x]^2)/(-a^2 + b^2)])*Cos[c
+ d*x]^2)*(a^2 + b^2*(-1 + Cos[c + d*x]^2))) + (a*(-2*ArcTan[1 - (Sqrt[2]*Sqrt[b]*Sqrt[Cos[c + d*x]])/(a^2 - b
^2)^(1/4)] + 2*ArcTan[1 + (Sqrt[2]*Sqrt[b]*Sqrt[Cos[c + d*x]])/(a^2 - b^2)^(1/4)] - Log[Sqrt[a^2 - b^2] - Sqrt
[2]*Sqrt[b]*(a^2 - b^2)^(1/4)*Sqrt[Cos[c + d*x]] + b*Cos[c + d*x]] + Log[Sqrt[a^2 - b^2] + Sqrt[2]*Sqrt[b]*(a^
2 - b^2)^(1/4)*Sqrt[Cos[c + d*x]] + b*Cos[c + d*x]]))/(4*Sqrt[2]*Sqrt[b]*(a^2 - b^2)^(3/4)))*Sin[c + d*x]^2)/(
(1 - Cos[c + d*x]^2)*(a + b*Sin[c + d*x]))))/(48*(a - b)^2*b*(a + b)^2*d*Cos[c + d*x]^(3/2))

Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 18.26 (sec) , antiderivative size = 4007, normalized size of antiderivative = 6.77

method result size
default \(\text {Expression too large to display}\) \(4007\)

[In]

int((e*cos(d*x+c))^(3/2)/(a+b*sin(d*x+c))^4,x,method=_RETURNVERBOSE)

[Out]

(-16*e^2*a*b*(1/64/b^2*(6*(arctan((2^(1/2)*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(1/2)-(e^2*(a^2-b^2)/b^2)^(1/4))/(e^2*
(a^2-b^2)/b^2)^(1/4))+arctan((2^(1/2)*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(1/2)+(e^2*(a^2-b^2)/b^2)^(1/4))/(e^2*(a^2-
b^2)/b^2)^(1/4))+1/2*ln((2*e*cos(1/2*d*x+1/2*c)^2-e+(e^2*(a^2-b^2)/b^2)^(1/4)*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(1/
2)*2^(1/2)+(e^2*(a^2-b^2)/b^2)^(1/2))/(2*e*cos(1/2*d*x+1/2*c)^2-e-(e^2*(a^2-b^2)/b^2)^(1/4)*(2*e*cos(1/2*d*x+1
/2*c)^2-e)^(1/2)*2^(1/2)+(e^2*(a^2-b^2)/b^2)^(1/2))))*2^(1/2)*(4*cos(1/2*d*x+1/2*c)^4*b^2-4*cos(1/2*d*x+1/2*c)
^2*b^2+a^2)*(e^2*(a^2-b^2)/b^2)^(1/4)+(8*a^2-8*b^2)*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(1/2))/e/(a-b)^2/(a+b)^2/(4*c
os(1/2*d*x+1/2*c)^4*b^2-4*cos(1/2*d*x+1/2*c)^2*b^2+a^2)-1/512*(3*a^2-b^2)/b^2*(21*(e^2*(a^2-b^2)/b^2)^(1/4)*(4
*sin(1/2*d*x+1/2*c)^4*b^2-4*sin(1/2*d*x+1/2*c)^2*b^2+a^2)^2*2^(1/2)*ln((2*e*cos(1/2*d*x+1/2*c)^2-e+(e^2*(a^2-b
^2)/b^2)^(1/4)*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(1/2)*2^(1/2)+(e^2*(a^2-b^2)/b^2)^(1/2))/(2*e*cos(1/2*d*x+1/2*c)^2
-e-(e^2*(a^2-b^2)/b^2)^(1/4)*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(1/2)*2^(1/2)+(e^2*(a^2-b^2)/b^2)^(1/2)))+42*(e^2*(a
^2-b^2)/b^2)^(1/4)*(4*sin(1/2*d*x+1/2*c)^4*b^2-4*sin(1/2*d*x+1/2*c)^2*b^2+a^2)^2*2^(1/2)*arctan((2^(1/2)*(2*e*
cos(1/2*d*x+1/2*c)^2-e)^(1/2)-(e^2*(a^2-b^2)/b^2)^(1/4))/(e^2*(a^2-b^2)/b^2)^(1/4))+42*(e^2*(a^2-b^2)/b^2)^(1/
4)*(4*sin(1/2*d*x+1/2*c)^4*b^2-4*sin(1/2*d*x+1/2*c)^2*b^2+a^2)^2*2^(1/2)*arctan((2^(1/2)*(2*e*cos(1/2*d*x+1/2*
c)^2-e)^(1/2)+(e^2*(a^2-b^2)/b^2)^(1/4))/(e^2*(a^2-b^2)/b^2)^(1/4))+88*(4/11*(7*cos(1/2*d*x+1/2*c)^4-7*cos(1/2
*d*x+1/2*c)^2-1)*b^2+a^2)*(a-b)*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(1/2)*(a+b))/e/(a^2-b^2)^3/(4*cos(1/2*d*x+1/2*c)^
4*b^2-4*cos(1/2*d*x+1/2*c)^2*b^2+a^2)^2+1/1024*a^2*(a^2-b^2)/b^2*(77*(4*sin(1/2*d*x+1/2*c)^4*b^2-4*sin(1/2*d*x
+1/2*c)^2*b^2+a^2)^3*2^(1/2)*(ln((2*e*cos(1/2*d*x+1/2*c)^2-e+(e^2*(a^2-b^2)/b^2)^(1/4)*(2*e*cos(1/2*d*x+1/2*c)
^2-e)^(1/2)*2^(1/2)+(e^2*(a^2-b^2)/b^2)^(1/2))/(2*e*cos(1/2*d*x+1/2*c)^2-e-(e^2*(a^2-b^2)/b^2)^(1/4)*(2*e*cos(
1/2*d*x+1/2*c)^2-e)^(1/2)*2^(1/2)+(e^2*(a^2-b^2)/b^2)^(1/2)))+2*arctan((2^(1/2)*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(
1/2)+(e^2*(a^2-b^2)/b^2)^(1/4))/(e^2*(a^2-b^2)/b^2)^(1/4))+2*arctan((2^(1/2)*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(1/2
)-(e^2*(a^2-b^2)/b^2)^(1/4))/(e^2*(a^2-b^2)/b^2)^(1/4)))*(e^2*(a^2-b^2)/b^2)^(1/4)+408*(16/51*(2/3+77/3*cos(1/
2*d*x+1/2*c)^8-154/3*cos(1/2*d*x+1/2*c)^6+22*cos(1/2*d*x+1/2*c)^4+11/3*cos(1/2*d*x+1/2*c)^2)*b^4+88/17*a^2*(co
s(1/2*d*x+1/2*c)^4-cos(1/2*d*x+1/2*c)^2-3/22)*b^2+a^4)*(a-b)*(2*e*cos(1/2*d*x+1/2*c)^2-e)^(1/2)*(a+b))/(a-b)^4
/(4*sin(1/2*d*x+1/2*c)^4*b^2-4*sin(1/2*d*x+1/2*c)^2*b^2+a^2)^3/(a+b)^4/e)-2*(e*(2*cos(1/2*d*x+1/2*c)^2-1)*sin(
1/2*d*x+1/2*c)^2)^(1/2)*e^2*(1/16/b^4*sum(1/_alpha/(2*_alpha^2-1)*(2^(1/2)/(e*(2*_alpha^2*b^2+a^2-2*b^2)/b^2)^
(1/2)*arctanh(1/2*e*(4*_alpha^2-3)/(4*a^2-3*b^2)*(4*a^2*cos(1/2*d*x+1/2*c)^2-3*cos(1/2*d*x+1/2*c)^2*b^2+b^2*_a
lpha^2-3*a^2+2*b^2)*2^(1/2)/(e*(2*_alpha^2*b^2+a^2-2*b^2)/b^2)^(1/2)/(-e*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1
/2*c)^2))^(1/2))+8*b^2/a^2*_alpha*(_alpha^2-1)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/
(-e*sin(1/2*d*x+1/2*c)^2*(2*sin(1/2*d*x+1/2*c)^2-1))^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-4*b^2/a^2*(_alpha^2-
1),2^(1/2))),_alpha=RootOf(4*_Z^4*b^2-4*_Z^2*b^2+a^2))+(-9*a^2+b^2)/b^2*(1/2*b^2/(a^2-b^2)/a^2/e*cos(1/2*d*x+1
/2*c)*(-e*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)/(4*cos(1/2*d*x+1/2*c)^4*b^2-4*cos(1/2*d*x+1/2*c
)^2*b^2+a^2)-1/4/(a^2-b^2)/a^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-e*(2*sin(1/2*d
*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-1/64/a^2/b^2*sum((-5*a^2+2*b^2)
/(a-b)/(a+b)/(2*_alpha^2-1)/_alpha*(2^(1/2)/(e*(2*_alpha^2*b^2+a^2-2*b^2)/b^2)^(1/2)*arctanh(1/2*e*(4*_alpha^2
-3)/(4*a^2-3*b^2)*(4*a^2*cos(1/2*d*x+1/2*c)^2-3*cos(1/2*d*x+1/2*c)^2*b^2+b^2*_alpha^2-3*a^2+2*b^2)*2^(1/2)/(e*
(2*_alpha^2*b^2+a^2-2*b^2)/b^2)^(1/2)/(-e*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2))+8*b^2/a^2*_alp
ha*(_alpha^2-1)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-e*sin(1/2*d*x+1/2*c)^2*(2*sin
(1/2*d*x+1/2*c)^2-1))^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-4*b^2/a^2*(_alpha^2-1),2^(1/2))),_alpha=RootOf(4*_Z
^4*b^2-4*_Z^2*b^2+a^2)))-8*a^4*(a^2-b^2)/b^2*(1/6*b^2/(a^2-b^2)/a^2/e*cos(1/2*d*x+1/2*c)*(-e*(2*sin(1/2*d*x+1/
2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)/(4*cos(1/2*d*x+1/2*c)^4*b^2-4*cos(1/2*d*x+1/2*c)^2*b^2+a^2)^3+1/48*b^2*(21
*a^2-10*b^2)/(a^2-b^2)^2/a^4/e*cos(1/2*d*x+1/2*c)*(-e*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)/(4*
cos(1/2*d*x+1/2*c)^4*b^2-4*cos(1/2*d*x+1/2*c)^2*b^2+a^2)^2+1/192*b^2*(201*a^4-184*a^2*b^2+60*b^4)/(a^2-b^2)^3/
a^6/e*cos(1/2*d*x+1/2*c)*(-e*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)/(4*cos(1/2*d*x+1/2*c)^4*b^2-
4*cos(1/2*d*x+1/2*c)^2*b^2+a^2)-1/384*(201*a^4-184*a^2*b^2+60*b^4)/(a^2-b^2)^3/a^6*(sin(1/2*d*x+1/2*c)^2)^(1/2
)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-e*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)*EllipticF(cos(1/2
*d*x+1/2*c),2^(1/2))-1/2048/a^6/b^2*sum((-195*a^6+234*a^4*b^2-156*a^2*b^4+40*b^6)/(a-b)^3/(a+b)^3/(2*_alpha^2-
1)/_alpha*(2^(1/2)/(e*(2*_alpha^2*b^2+a^2-2*b^2)/b^2)^(1/2)*arctanh(1/2*e*(4*_alpha^2-3)/(4*a^2-3*b^2)*(4*a^2*
cos(1/2*d*x+1/2*c)^2-3*cos(1/2*d*x+1/2*c)^2*b^2+b^2*_alpha^2-3*a^2+2*b^2)*2^(1/2)/(e*(2*_alpha^2*b^2+a^2-2*b^2
)/b^2)^(1/2)/(-e*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2))+8*b^2/a^2*_alpha*(_alpha^2-1)*(sin(1/2*
d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-e*sin(1/2*d*x+1/2*c)^2*(2*sin(1/2*d*x+1/2*c)^2-1))^(1/
2)*EllipticPi(cos(1/2*d*x+1/2*c),-4*b^2/a^2*(_alpha^2-1),2^(1/2))),_alpha=RootOf(4*_Z^4*b^2-4*_Z^2*b^2+a^2)))+
8*a^2*(2*a^2-b^2)/b^2*(1/4*b^2/(a^2-b^2)/a^2/e*cos(1/2*d*x+1/2*c)*(-e*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*
c)^2))^(1/2)/(4*cos(1/2*d*x+1/2*c)^4*b^2-4*cos(1/2*d*x+1/2*c)^2*b^2+a^2)^2+1/16*b^2*(13*a^2-6*b^2)/(a^2-b^2)^2
/a^4/e*cos(1/2*d*x+1/2*c)*(-e*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)/(4*cos(1/2*d*x+1/2*c)^4*b^2
-4*cos(1/2*d*x+1/2*c)^2*b^2+a^2)-1/32*(13*a^2-6*b^2)/(a^2-b^2)^2/a^4*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*
d*x+1/2*c)^2+1)^(1/2)/(-e*(2*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^
(1/2))-3/512/a^4/b^2*sum((-15*a^4+12*a^2*b^2-4*b^4)/(a-b)^2/(a+b)^2/(2*_alpha^2-1)/_alpha*(2^(1/2)/(e*(2*_alph
a^2*b^2+a^2-2*b^2)/b^2)^(1/2)*arctanh(1/2*e*(4*_alpha^2-3)/(4*a^2-3*b^2)*(4*a^2*cos(1/2*d*x+1/2*c)^2-3*cos(1/2
*d*x+1/2*c)^2*b^2+b^2*_alpha^2-3*a^2+2*b^2)*2^(1/2)/(e*(2*_alpha^2*b^2+a^2-2*b^2)/b^2)^(1/2)/(-e*(2*sin(1/2*d*
x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2))^(1/2))+8*b^2/a^2*_alpha*(_alpha^2-1)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/
2*d*x+1/2*c)^2+1)^(1/2)/(-e*sin(1/2*d*x+1/2*c)^2*(2*sin(1/2*d*x+1/2*c)^2-1))^(1/2)*EllipticPi(cos(1/2*d*x+1/2*
c),-4*b^2/a^2*(_alpha^2-1),2^(1/2))),_alpha=RootOf(4*_Z^4*b^2-4*_Z^2*b^2+a^2))))/sin(1/2*d*x+1/2*c)/(e*(2*cos(
1/2*d*x+1/2*c)^2-1))^(1/2))/d

Fricas [F]

\[ \int \frac {(e \cos (c+d x))^{3/2}}{(a+b \sin (c+d x))^4} \, dx=\int { \frac {\left (e \cos \left (d x + c\right )\right )^{\frac {3}{2}}}{{\left (b \sin \left (d x + c\right ) + a\right )}^{4}} \,d x } \]

[In]

integrate((e*cos(d*x+c))^(3/2)/(a+b*sin(d*x+c))^4,x, algorithm="fricas")

[Out]

integral(sqrt(e*cos(d*x + c))*e*cos(d*x + c)/(b^4*cos(d*x + c)^4 + a^4 + 6*a^2*b^2 + b^4 - 2*(3*a^2*b^2 + b^4)
*cos(d*x + c)^2 - 4*(a*b^3*cos(d*x + c)^2 - a^3*b - a*b^3)*sin(d*x + c)), x)

Sympy [F(-1)]

Timed out. \[ \int \frac {(e \cos (c+d x))^{3/2}}{(a+b \sin (c+d x))^4} \, dx=\text {Timed out} \]

[In]

integrate((e*cos(d*x+c))**(3/2)/(a+b*sin(d*x+c))**4,x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(e \cos (c+d x))^{3/2}}{(a+b \sin (c+d x))^4} \, dx=\int { \frac {\left (e \cos \left (d x + c\right )\right )^{\frac {3}{2}}}{{\left (b \sin \left (d x + c\right ) + a\right )}^{4}} \,d x } \]

[In]

integrate((e*cos(d*x+c))^(3/2)/(a+b*sin(d*x+c))^4,x, algorithm="maxima")

[Out]

integrate((e*cos(d*x + c))^(3/2)/(b*sin(d*x + c) + a)^4, x)

Giac [F]

\[ \int \frac {(e \cos (c+d x))^{3/2}}{(a+b \sin (c+d x))^4} \, dx=\int { \frac {\left (e \cos \left (d x + c\right )\right )^{\frac {3}{2}}}{{\left (b \sin \left (d x + c\right ) + a\right )}^{4}} \,d x } \]

[In]

integrate((e*cos(d*x+c))^(3/2)/(a+b*sin(d*x+c))^4,x, algorithm="giac")

[Out]

integrate((e*cos(d*x + c))^(3/2)/(b*sin(d*x + c) + a)^4, x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(e \cos (c+d x))^{3/2}}{(a+b \sin (c+d x))^4} \, dx=\int \frac {{\left (e\,\cos \left (c+d\,x\right )\right )}^{3/2}}{{\left (a+b\,\sin \left (c+d\,x\right )\right )}^4} \,d x \]

[In]

int((e*cos(c + d*x))^(3/2)/(a + b*sin(c + d*x))^4,x)

[Out]

int((e*cos(c + d*x))^(3/2)/(a + b*sin(c + d*x))^4, x)